Math 100 - Week 7 Recitation (Fall 2013)

The purpose of this week's activity is to reinforce the difference between sequences and series. For each of the following expressions a_{n}, your goal is to
(a) Determine whether the sequence $\left\{a_{n}\right\}$ converges or diverges.
(b) If the sequence converges, find its limit.
(c) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
(d) If the series converges, find its sum.

At the end of the recitation session, as a sample of your work, each group will be asked to submit solutions (all four parts) to three of the problems on the worksheet; you may choose any three. These problems will be graded to determine recitation grades for all the group's members. Remember, as always, that these solutions should be a consensus, agreed on by all members of your group.
(Note: The square brackets in Problems 4, 5, and 8 are no different from parentheses... they're just there to make some of the complicated formulas more easily readable.)
1.

$$
a_{n}=\frac{2^{2 n}+3^{n}}{5^{n-1}}
$$

2.

$$
a_{n}=\frac{2^{n}+3^{2 n}}{5^{n+1}}
$$

3.

$$
a_{n}=\frac{4 e^{n}+n^{2}}{9 e^{n}+2 n}
$$

4.

$$
a_{n}=\left[n^{3}+1\right]^{-1 / 3}-\left[(n+2)^{3}+1\right]^{-1 / 3}
$$

5.

$$
a_{n}=\left[n^{3}+1\right]^{1 / 3}-\left[(n+2)^{3}+1\right]^{1 / 3}
$$

6.

$$
a_{n}=\left(2^{n}+1\right) e^{-n}
$$

7.

$$
a_{n}=\left(4^{n}+1\right) \pi^{-n}
$$

8.

$$
a_{n}=\ln [n(n+2)]-\ln \left[(n+1)^{2}\right]
$$

