Math 100 - Week 2 Recitation (Fall 2013)

Consider the following functions:

$$
\begin{array}{cc}
f(x)=x^{4}-4 x^{2} & p(t)=e^{\sin t} \\
g(x)=\ln \left(x^{7 / 8}\right) & q(t)=e^{t} \sin t \\
h(x)=\sqrt{2 \cos ^{2} x+1} & r(t)=\sin \left(e^{t}\right)+2
\end{array}
$$

1. Determine the derivative of each of the six functions above.
2. Determine $g^{\prime \prime}(x)$ and $g^{(3)}(x)$.
3. Find each value of x for which $f(x)$ has a local minimum or maximum (and determine which).
4. (a) Determine the slope of the tangent line to the curve $y=h(x)$ at the point $(\pi / 4, \sqrt{2})$.
(b) Determine an equation for the tangent line.
5. If $q(t)$ represents the position (in meters) of a linearly moving object at time t (in seconds). What is the acceleration at time t ? What is the velocity at time t ?
6. Let $r(t)$ represent the number of liters of acid in a chemical system at time t (measured in minutes). At time $t=\ln (\pi / 3)$, is the amount of acid increasing or decreasing? At what rate?
7. Based on the derivatives you found above, is the following antiderivative correct? Explain why or why not.

$$
\int \cos \left(e^{t}\right) d t=\sin \left(e^{t}\right)+C
$$

8. Based on the derivatives you found above, is the following antiderivative correct? Explain why or why not. (Assume $x>0$.)

$$
\int \frac{7}{x} d x=8 \ln \left(x^{7 / 8}\right)+C
$$

