Hurwitz Zeta is a sum of Dirichlet L Functions, and vice-versa Friday, Feb 8 2013 

At least three times now, I have needed to use that Hurwitz Zeta functions are a sum of L-functions and its converse, only to have forgotten how it goes. And unfortunately, the current wikipedia article on the Hurwitz Zeta function has a mistake, omitting the $varphi$ term (although it will soon be corrected). Instead of re-doing it each time, I write this detail here, below the fold.


An Application of Mobius Inversion to Certain Asymptotics I Thursday, Nov 8 2012 

In this note, I consider an application of generalized Mobius Inversion to extract information of arithmetical sums with asymptotics of the form \displaystyle \sum_{nk^j \leq x} f(n) = a_1x + O(x^{1 - \epsilon}) for a fixed j and a constant a_1, so that the sum is over both n and k. We will see that \displaystyle \sum_{nk^j \leq x} f(n) = a_1x + O(x^{1-\epsilon}) \iff \sum_{n \leq x} f(n) = \frac{a_1x}{\zeta(j)} + O(x^{1 - \epsilon}).